
Journal of Approximation Theory 102, 120�140 (2000)

A Problem in Potential Theory and Zero Asymptotics
of Krawtchouk Polynomials

P. D. Dragnev1

Department of Mathematics, Indiana-Purdue University, Fort Wayne, Indiana 46805, U.S.A.
E-mail: dragnevp�ipfw.edu

and

E. B. Saff2

Department of Mathematics, Institute for Constructive Mathematics,
University of South Florida, Tampa, Florida 33620, U.S.A.

E-mail: esaff�math.usf.edu

Communicated by Vilmos Totik

Received September 4, 1997; accepted in revised form March 25, 1999

In this paper we investigate the asymptotics of the zeros of normalized
Krawtchouk polynomials kn(Nx, p, N) when the ratio of the parameters n�N � : as
n, N � �. For this purpose we consider in detail a particular constrained energy
problem on the interval [0, 1] in the presence of an external field. We find the sup-
port and the density of the constrained extremal measure for all possible values of
the parameter :. � 2000 Academic Press

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In [4] we investigated the constrained energy problem (denoted briefly
by CEP) for logarithmic potentials and derived several theoretical results.
As an application we showed that the weak* limit of the normalized zero
counting measures of the Krawtchouk polynomials is the solution to a par-
ticular CEP. In the case when the parameter p=1�2 the solution was found
explicitly. Our goal here is to settle the general case. The results of this
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paper also provide a concrete example for the solution to an inverse
problem for the Toda lattice having Hamiltonian

H=
1
2

:
N

k=1

y2
k+ :

N&1

k=1

exk&xk+1.

For details see the paper by Deift and McLaughlin [2]. Their parameters
are related to those of this paper as follows; x W :, * W x, and
t W log( p�(1& p)).

With the notation of [11, Sect. 2.82], for given p and N the Krawtchouk
polynomial of degree n(�N) is given by

kn(x, p, N)=\N
n +

&1�2

( pq)&n�2 :
n

s=0

(&1)n&s \N&x
n&s +\

x
s+ pn&sqs, (1.1)

where p, q>0, p+q=1, and N # N. These polynomials are orthonormal
with respect to

:
N

i=0
\N

i + piqN&i $(i),

where $(i) is the unit measure with mass point at i, i=0, 1, ..., N. As is well
known the zeros of kn are all simple and lie in the interval (0, N) (see [1,
11]). They are also separated by the mass points of the measure of
orthogonality. We shall convert the problem to the interval [0, 1] by
scaling the polynomials. Let Pn(x)=Pn(x, p, N) :=Ap, n, Nkn(Nx, p, N),
where the factor

Ap, n, N=\N
n +

1�2

( pq)n�2 n ! N&n (1.2)

is chosen so that Pn has leading coefficient one. Then the polynomials
Pn(x) satisfy the orthogonality relation

:
N

i=0 \
N
i + piqN&iPn \ i

N+ Pm \ i
N+=A2

p, n, N $n, m , n, m=0, 1, ..., N. (1.3)

Also Pn is the discrete L2 -minimal monic polynomial, i.e., if we denote by
{N :=[i�N : i=0, ..., N] the N+1 equally spaced points of [0, 1], then

&Pn&2
{N

= min
pn=xn+ } } } { :

N

i=0
\N

i + piqN&ip2
n \ i

N+==A2
p, n, N , n=0, 1, ..., N,

(1.4)
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where the norm &pn&{N of a polynomial pn is defined by the square root of
the sum above.

Next we introduce the terminology and the notations that are required
to state our main results. Let /Pn be the normalized zero counting measure
of the polynomial Pn , i.e.,

/Pn :=
1
n

:
Pn(z)=0

$(z),

where $(z) is the measure with unit mass at z. Set _=_: :=(1�:) m, where
m is the Lebesgue measure on [0, 1]. We consider the weight function
w :=exp(&Q:, p) on [0, 1], where

Q:, p(x) :=
1
2:

[x log x+(1&x) log(1&x)&x log p&(1&x) log(1& p)].

(1.5)

The weighted energy of a probability measure + with S+ :=supp(+)/[0, 1]
is given by

Iw(+) :=| | log
1

|x&t| w(x) w(t)
d+(x) d+(t)

and its logarithmic potential is given by

U+(x) :=| log
1

|x&t|
d+(t).

We define the _-constrained extremal measure *_
w to be the unique solution

of the minimal energy problem

Iw(*_
w)=min[Iw(+) : + # M_], (1.6)

where M_ :=[+ : &+&=1 and 0�+�_] (see [9, 4]). The notation +�_
means that _&+ is a positive measure. We shall denote the constrained
extremal measure by *:, p in order to emphasize the dependence on the
parameters. We also use +:, p to denote the solution of the unconstrained
problem (i.e., when the minimum in (1.6) is taken over all probability
measures + with S+ /[0, 1]).

The following theorem about the weak* limit of /Pn was proved in [4].

Theorem A. Let kn(x, p, N) be the Krawtchouk polynomial (1.1) and
Pn(x) :=Ap, n, N kn(Nx, p, N) be the associated normalized monic polyno-
mials. Suppose N=Nj , n=nj are sequences satisfying Nj � �, nj � �, and
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nj �Nj � :<1 as j � �. Then the normalized zero counting measures of Pn

and the nth root of the discrete norms satisfy

/Pn
*w� *:, p as j � �, (1.7)

and

lim
j � �

&Pn&1�n
{N

=
- :;pq
e;1�(2:) , (1.8)

where ;=1&:, q=1& p, and

w(x)=exp(&Q:, p(x))=[xx(1&x)1&x�px(1& p)1&x]&1�(2:).

While the n th root asymptotics for the norms in (1.8) can be found easily
from (1.2) (see [4, Remark 3.6]), the zero distribution requires a much
deeper analysis. The case p=q=1�2 is relatively easy and was handled by
the authors in [4]. Here we investigate the general case. The determination
of the support of the limiting measure *:, p is given in Theorem 2 below; its
distribution is derived in Theorem 3. Some properties of the class of
measures *:, p and +:, p are summarized in the next theorem. For simplicity
we shall denote hereafter ; :=1&: and q :=1& p.

Theorem 1. Let 0<:, p<1 and set ;=1&: and q=1& p. Then the
following hold:

(a) :*:, p+;*;, q=m, where m is the Lebesgue measure on [0, 1].

(b) (d*:, p �dx)(1&x)=(d*:, q�dx)(x) and (d+:, p �dx)(1&x)=(d+:, q �
dx)(x).

(c) (:+:, p+;+;, q)|S+:, p & S+;, q
�m.

According to this theorem the only case that we need to consider is when
0�:�1�2 and p<1�2 (we recall that the case p=1�2 has already been
considered in [4]).

As in the unconstrained case, the most difficult part of the analysis is the
determination of the support of the extremal measure. The next theorem
deals simultaneously with the supports of the constrained extremal measure
*:, p and its dual *1&:, 1& p .

Theorem 2. Let 0<:<1 and 0< p<1�2. Define the constants
A=A:, p and B=B:, p by the formulas

A :=:q+;p&2 - :;pq, B :=:q+;p+2 - :;pq, (1.9)

where ;=1&: and q=1& p.
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(a) If 0<:< p, then S*: , p=[A, B] and S*; , q=[0, 1].

(b) If p�:<1& p, then S*: , p=[0, B] and S*; , q=[A, 1].

(c) If 1& p�:<1, then S*: , p=[0, 1] and S*; , q=[A, B].

The density of the constrained extremal measure is described in the next
result.

Theorem 3. With the notation of the previous theorem, the density of the
(:, p)-constrained extremal measure *:, p is given as follows.

(a) If 0<:< p,

d*:, p

dt
=

1
:? {

?
2

&arc tan �A(B&t)
B(t&A)

&arc tan �(1&B)(t&A)
(1&A)(B&t)= (1.10)

for t # [A, B] and d*:, p�dt=0 otherwise.

FIG. 1. Case N=101, n=25, p=1�3, :=0.25, A=0.0084, B=0.8249.
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(b) If p�:<1& p,

d*:, p

dt
=

1
:? {

?
2

+arc tan �A(B&t)
B(t&A)

&arc tan �(1&B)(t&A)
(1&A)(B&t)= , (1.11)

for t # [A, B], d*:, p �dt=1�: on [0, A], and zero elsewhere.

(c) If 1& p�:<1,

d*:, p

dt
=

1
:? {

?
2

+arc tan �A(B&t)
B(t&A)

+arc tan �(1&B)(t&A)
(1&A)(B&t)= , (1.12)

for t # [A, B] and d*:, p�dt=1�: on [0, A] _ [B, 1].

The results of Theorems 2 and 3 are graphically illustrated in Figs. 1, 2,
and 3, where we compare the (polygonal line) density of the zeros of the
Krawtchouk polynomials with the density of the limiting measures for dif-
ferent values of the parameter :. Notice how the shape of the density of the
extremal measure changes as we pass through the critical values := p and
:=1& p.

FIG. 2. Case N=81, n=32, p=1�3, :=0.4, A=0.0048, B=0.9285.
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FIG. 3. Case N=61, n=42, p=1�3, :=0.7, A=0.1346, B=0.9987.

The computations for the zero densities of the normalized Krawtchouk
polynomials were done with MAPLE in accordance with the following
algorithm:

1. Divide [0, 1] into l equal subintervals by the points xi=i�l,
i=0, ..., l.

2. For fixed j define the value of the density of the zeros Pn(x) at xi

to be

�N, n(xi) :=
|[z # [xi& j , xi+ j] | Pn(z)=0]|

n |xi+ j&xi& j |
,

where x& j= } } } =x&1=0 and xl+1= } } } =xl+ j=1.

3. Define �N, n(x) to be the piecewise linear function determined by
the points [(xi , �N, n(xi))]l

i=0.

In Figs. 1�3, we have taken l=20, j=1, and plotted the density �N, n of
the zeros of the Krawtchouk polynomials versus the density of the extremal
measure d*:, p�dt.
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2. PROOF OF THEOREM 1

Proof. (a) We note first that, for x # [0, 1],

Um(x)=|
1

0
log

1
|x&t|

dt=&x log x&(1&x) log(1&x)+1, (2.1)

and therefore,

Q:, p(x)=&
1

2:
Um(x)+

1
2:

x log
q
p

+
1

2:
(1&log q). (2.2)

From [4, Theorem 2.1 and Remark 2.3] the variational inequalities for the
logarithmic potential of *:, p are

U*:, p(x)+Q:, p(x)�C:, p on S_&*: , p (2.3)
U*:, p(x)+Q:, p(x)�C:, p on S*: , p ,

where _=(1�:) m and C:, p is a constant. Using the formula

:Q:, p(x)+;Q;, q(x)=&Um(x)+1&log - pq, (2.4)

we find that the dual measure & :=(_&*:, p) } (:�;) satisfies the inequalities

U &(x)=Q;, q(x)�&
:
;

C:, p+
1
;

&
1

2;
log pq on S_;&&

(2.5)

U &(x)=Q;, q(x)�&
:
;

C:, p+
1
;

&
1

2;
log pq on S& ,

where _;=(1�;) m. Moreover, &�_; and &&&=1, so by the uniqueness of
the _; -constrained extremal measure &=*;, q . Thus we obtain

:*:, p+;*;, q=m.

(b) The proof of this part is an easy consequence of the fact that

Q:, p(1&x)=Q:, p(x)

and the uniqueness of the extremal measure.

(c) From [10, Theorem 1.3], since [0, 1] is regular set w.r.t. the
Dirichlet problem, we can write the equilibrium inequalities for the poten-
tials of +:, p and +;, q as

U+:, p(x)+Q:, p(x)�F:, p on [0, 1] (2.6)

U+:, p(x)+Q:, p(x)�F:, p on S+: , p , (2.7)
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and

U+;, q(x)+Q;, q(x)�F;, q on [0, 1] (2.8)

U+;, q(x)+Q;, q(x)�F;, q on S+;, q . (2.9)

Adding : times (2.6) to ; times (2.8) and using (2.4) we obtain

U:+: , p+;+;, q(x)&Um(x)�:F:, p+;F;, q+log - pq&1 on [0, 1].

By the principle of domination this inequality can be extended to hold
everywhere (see [7, Theorem 1.27]). On the intersection S+: , p & S+;, q the
opposite inequality holds (just by adding (2.7) and (2.9)) and by [10,
Theorem IV.4.5] we obtain the assertion of part (c). K

3. THE SUPPORT OF *:, p

To find the _-constrained extremal measure *:, p it is essential to deter-
mine the support of this measure.

First observe that the corresponding external field Q:, p is a convex func-
tion on [0, 1], which according to Theorem 2.16 in [4] implies that S*: , p

is an interval.

Case 1. :< p. In this case we focus first on the solution +:, p of the
unconstrained weighted energy problem on the interval [0, 1] with weight
function w:, p=exp(&Q:, p) (cf. [10]). One reason for considering the
unconstrained problem is that there is a relationship between the support
of *:, p and +:, p ; namely that S+: , p /S*: , p (see [4, Theorem 2.6]). The
following lemma determines the support of +:, p . In Theorem 3(a) we deter-
mine the density of this measure when :< p, from which we deduce that
+:, p�_, and therefore *:, p=+:, p , which settles this case.

Lemma 4. Let p<1�2 and w=exp(&Q:, p) be a weight function on
[0, 1], where Q:, p is given in (1.5). Then for the support S+: , p of the
weighted equilibrium measure +:, p we have

(a) If 0<:< p, then S+: , p=[A, B] where A, B are given in (1.9).

(b) If p�:<:p :=(1�2)(log(- 1& p�- p)+1), then S+: , p=[0, b:],
where b: is the unique solution of the equation

1
b

&
1
2: {log

- b - 1& p

(1+- 1&b) - p
+

1

1+- 1&b==0.

(c) If :p�:<1, then S+: , p=[0, 1].
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Remark. Comparing Theorem 2 and Lemma 4 we observe an interest-
ing phenomenon. Let : be gradually increasing from 0 to 1 with p fixed,
p<1�2. Then the supports S+: , p and S*: , p are intervals expanding with : (cf.
[10, Theorem IV.1.6 (f)]). At first, when 0<:� p, the two measures coin-
cide (and the supports are the same), i.e., the constraint is not active. When
p<:<1& p, the constraint becomes active and the two measures are dif-
ferent. We have that S+: , p=[0, b:] and S*: , p=[0, B:, p] with b:<B:, p .
When 1& p�:<:p , still S+: , p=[0, b:] (b:<1), while S*: , p=[0, 1].
Finally, when :p�:<1, S+: , p=S*: , p=[0, 1].

Proof. We shall use as a basic tool the Mhaskar�Saff functional,
defined for any compact set K

F(K)=log cap(K)&| Q d|K ,

where |K is the (unweighted) equilibrium measure of K and Q is the
external field of the corresponding energy problem (see [8; 10,
Theorem IV.1.5]). Since Q:, p is convex, the support of +:, p is an interval
(cf. [10, Theorem IV.1.11]), say [a, b]/[0, 1], where the pair [a, b]
maximizes

F([a, b])=log cap([a, b])&| Q:, p d|[a, b] (3.1)

for 0�a<b�1.
It follows from the formula for Q:, p in (1.5) that for fixed p, the support

S+:, p is an increasing function of : (cf. [10, Theorem IV.1.6 (f)]), i.e., we
have a family of intervals expanding with :.

Next we compute the F-functional. After the change of variables

x=
b+a

2
&

b&a
2

cos %,

we obtain

F([a, b])=log
b&a

4
&

1
? |

?

0
Q:, p \b+a

2
&

b&a
2

cos %+ d%

=log
b&a

4
&

1
2:

[I1+I2+I3&log q], (3.2)
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where

I1 :=
1
? |

?

0 \
b+a

2
&

b&a
2

cos %+ log \b+a
2

&
b&a

2
cos %+ d%,

I2 :=
1
? |

?

0 \
2&a&b

2
+

b&a
2

cos %+ log \2&a&b
2

+
b&a

2
cos %+ d%, (3.3)

I3 :=
1
?

log
q
p |

?

0 \
b+a

2
&

b&a
2

cos %+ d%=
b+a

2
log

q
p

.

From standard formulas (see, e.g., [10, Lemma IV.1.15]) we obtain

J1 :=
b+a

2
1
? |

?

0
log \b+a

2
&

b&a
2

cos %+ d%

=(b+a) log \- b+- a
2 + , (3.4)

and with the help of integration by parts we find

J2 :=
b&a

2 {&
1
? |

?

0
log \b+a

2
&

b&a
2

cos %+ d sin %=
=

b&a
2

} {b+a
b&a

&
4ab

(b&a)2 }
b&a

2 - ab==
b+a

2
&- ab. (3.5)

Thus, combining (3.4) and (3.5) we have

I1=J1+J2=(b+a) log \- b+- a
2 ++

b+a
2

&- ab. (3.6)

In a similar fashion we compute

I2=(2&a&b) log \- 1&a+- 1&b
2 ++

2&a&b
2

&- (1&a)(1&b). (3.7)

Combining (3.3), (3.6), and (3.7), the Mhaskar�Saff functional can be
written as

F([a, b])=log
b&a

4
&

1
2: {(b+a) log(- a+- b)&log 4q+1&- ab

+(2&a&b) log(- 1&a+- 1&b)

&- (1&a)(1&b)+
b+a

2
log

q
p= . (3.8)
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The partial derivatives of F with respect to a and b are given by

�F
�a

=&
1

b&a
&

1
2: {log

(- a+- b) - q

(- 1&a+- 1&b) - p

&
1
2 \

- b&- a

- a+- b
+

- 1&a&- 1&b

- 1&a+- 1&b+= ,

and

�F
�b

=
1

b&a
&

1
2: {log

(- a+- b) - q

(- 1&a+- 1&b) - p

+
1
2 \

- b&- a

- a+- b
+

- 1&a&- 1&b

- 1&a+- 1&b+= .

We investigate the functional first for local extrema inside the domain
0<a<b<1. Setting the partial derivatives to zero and by subtracting and
adding the two equalities, we derive after simplification the system

2
b&a

=
1
2: {

- b&- a

- a+- b
+

- 1&a&- 1&b

- 1&a+- 1&b= , (3.9)

0=
1
2: {2 log

- a+- b

- 1&a+- 1&b
+log

q
p= . (3.10)

Rationalizing (3.9) and multiplying by :(b&a) leads to

2:=1&- ab&- (1&a)(1&b). (3.11)

Solving (3.10) we obtain

- a+- b

- 1&a+- 1&b
=

- p

- q
. (3.12)

When we square both sides of the last equation and cross-multiply we get

q(a+b+2 - ab)= p(2&a&b+2 - 1&a - 1&b),

from which we find that

- 1&a - 1&b=
b+a

2p
+

q - ab
p

&1.
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Substituting back in (3.11) we find

4;p=a+b+2 - ab=(- a+- b)2. (3.13)

Next, from (3.11) we get

&a&b=&4:+4:2&2 - ab+4: - ab

and taking into account that a+b=4;p&2 - ab, :+;=1, and p+q=1
we find

&4p;+2 - ab=&4:;&2 - ab+4: - ab

or

- ab= p&:. (3.14)

The last equation shows that a solution to the system (3.9) and (3.10)
exists if and only if :< p. In this case, from (3.13) we have that
- a=2 - ;p&- b, so we substitute in (3.14) to get a quadratic equation
for - b. There are two positive solutions (here we use the fact that :< p)
given by

- b=- ;p\- ;p& p+:=- ;p\- :q.

Since - b>- a we finally find

- b=- ;p+- :q,

- a=- ;p&- :q,

which gives the formulas (1.9).
We now investigate the functional (3.8) on the boundary. Since for a=b

the functional is &�, we have to consider the cases when a=0 and when
b=1. It is easy to show that if b=1, in order to achieve a maximum of the
functional (3.8), we must have a=0 (see [3] for details). So let a=0. Then

f:(b) :=
�F
�b

(0, b)=
1
b

&
1
2: {log

- b - q

(1+- 1&b) - p
+

1

1+- 1&b= , (3.15)

is decreasing on (0, 1) and tends to +� as b � 0+. Let :p be the solution
of f:(1)=0, i.e.,

:p :=
1
2 {log

- q

- p
+1= . (3.16)

It is not difficult to prove that :p>1& p. Let also b: be the solution of the
equation f:(b)=0. Now we have the following:
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(a) If :� p, then f:(1)<0, which means that b:<1 and F([0, b]) is
maximized at b: . Since (�F��a)(0, b:)>0, we will increase the functional
F([=, b:]) for small =. Thus the absolute maximum is not achieved on the
boundary, but inside the domain, i.e., S+: , p=[A, B].

(b) If p<:<:p , then we have no critical points inside the domain
0�a<b�1, so the maximum is achieved on the boundary, i.e.,
S+: , p=[0, b:] with b:<1, because f:(1)<0 in this case.

(c) Finally, if :�:p then f:(1)�0 and the maximum of F([a, b]) is
achieved for [0, 1], i.e., S+: , p=[0, 1]. K

Case 2. p�:�1�2.

Lemma 5. Let 0< p�:�1�2 and set ;=1&:, q=1& p. Then
S*: , p=[0, B] and S*;, q=[A, 1], where A and B are the same as in (1.9).

Proof. We know that in this case S*: , p=[0, B] and S*;, q=[A, 1] for
suitable constants A and B with 0<A<B<1. This is so, because Q:, p and
Q;, q are convex functions on [0, 1] (and therefore the corresponding sup-
ports are intervals) and the union of the two supports is the whole interval
[0, 1]. Moreover, 0 # S+: , p /S*: , p and 1 # S+;, q /S*;, q (see Theorem 1(b)
and Lemma 4). That 0<A and B<1 can be seen from the unboundedness
of the measures +:, p near 0 and +;, q near 1 (which can be argued using
[10, Theorem IV.4.9]), the saturation principle [4, Theorem 2.6], and
Theorem 1(a). So what is left is to show that the constants A, B are given
by (1.9). First we observe that on the interval [0, A] the measure *:, p coin-
cides with the constraint measure. Similarly, *;, q coincides with _ on
[B, 1]. Denote m1 :=m| [0, A] , m2 :=m| [A, B] and m3 :=m| [B, 1] (recall that
m is the Lebesgue measure on [0, 1]). Then m=m1+m2+m3 . Define the
measures

*1 :=\*:, p&
m1

: +\1&
A
:+

&1

, *2 :=\*;, q&
m3

; +\1&
1&B

; +
&1

.

From [4, Corollary 2.10] we have that *1 and *2 are unconstrained
extremal measures on the intervals [A, 1] and [0, B] for the external fields
Q1, A and Q2, B , respectively, where

Q1, A(x) :=\1&
A
:+

&1

[Um1�:(x)+Q:, p(x)]
(3.17)

=
1

2(:&A) {Um1(x)&Um2(x)&Um3(x)+x log
q
p

+c1= ,
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and

Q2, B(x) :=\1&
1&B

; +
&1

[Um3�;(x)+Q;, q(x)]
(3.18)

=
1

2(B&:) {&Um1(x)&U m2(x)+Um3(x)+x log
p
q

+c2 = .

Here c1=1&log q and c2=1&log p. Replace A, B by variables a, b in the
definition of Q1, A and Q2, B . The corresponding Mhaskar�Saff functionals
are

F1([a, b])=log
b&a

4
&|

b

a
Q1, a(x) d|[a, b] ,

(3.19)

F2([a, b])=log
b&a

4
&|

b

a
Q2, b(x) d|[a, b] ,

where d|[a, b]=dx�(? - (x&a)(b&x)) is the equilibrium measure on the
interval [a, b]. Since supp(*1)=supp(*2)=[A, B], we have that B maxi-
mizes F1([A, b]) and A maximizes F2([a, B]), therefore

�F1

�b
(A, B)=0,

�F2

�a
(A, B)=0.

Thus, we can write the system

�F1

�b
+

�F2

�a
=0,

�F1

�b
&

�F2

�a
=0. (3.20)

We now compute the integrals

fi (a, b) :=|
b

a
Umi (x) d|[a, b] , i=1, 2, 3. (3.21)

For this purpose we remind the reader that the potential

U|[a, b](z)=&log } 2z&a&b+2 - (z&a)(z&b)
4 } ,

where the branch of - (z&a)(z&b) behaves like z at infinity. After
changing the order of integration we get
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f1(a, b)=|
a

0
U|[a, b](x) dx

=|
a

0
&log } 2x&a&b&2 - (x&a)(x&b)

4 } dx

=&x log } 2x&a&b&2 - (x&a)(x&b)
4 } }

a

0

+|
a

0

&x+(a+b)�2&(a+b)�2

- (x&a)(x&b)
dx

=&a log
b&a

4
&- (x&a)(x&b) }

a

0

+
a+b

2
log } 2x&a&b&2 - (x&a)(x&b)

4 } }
a

0

=
b&a

2
log

b&a
4

&(a+b) log
- b+- a

2
+- ab. (3.22)

On the interval [a, b] the potential U|[a, b](z)=&log[(b&a)�4];
therefore

f2(a, b)=&(b&a) log
b&a

4
. (3.23)

Similar computations for f3(a, b) yield (observe the change of the sign of
the square root in the log term)

f3(a, b)=|
1

b
U |[a, b](x) dx

=|
1

b
&log } 2x&a&b+2 - (x&a)(x&b)

4 } dx

=&(x&1) log } 2x&a&b+2 - (x&a)(x&b)
4 } }

1

b

+|
1

b

x&1+(a+b)�2&(a+b)�2

- (x&a)(x&b)
dx

=(b&1) log
b&a

4
&- (x&a)(x&b) }

1

b

+\a+b
2

&1+ log }2x&a&b+2 - (x&a)(x&b)
4 } }

1

b

=
b&a

2
log

b&a
4

+(a+b&2) log
- 1&a+- 1&b

2

+- 1&a - 1&b. (3.24)
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The functionals F1 and F2 in (3.19) can be expressed as

F1([a, b])=log
b&a

4
&

1
2(:&a) { f1& f2& f3+

a+b
2

log
q
p

+c1=
F2([a, b])=log

b&a
4

&
1

2(b&:) {& f1& f2+ f3&
a+b

2
log

q
p

+c2= .

From the formulas for f1 , f2 , and f3 in (3.22), (3.23), and (3.24) we find

�f1

�a
+

�f1

�b
=&2 log

- a+- b
2

,

�f1

�a
&

�f1

�b
=&log

b&a
4

&1+
- b&- a

- a+- b
,

�f2

�a
+

�f2

�b
=0,

�f2

�a
&

�f2

�b
=2 log

b&a
4

+2,

�f3

�a
+

�f3

�b
=2 log

- 1&a+- 1&b
2

,

�f3

�a
&

�f3

�b
=&log

b&a
4

&1+
- 1&a&- 1&b

- 1&a+- 1&b
.

Substituting these expressions in the system (3.20) we get that A, B satisfy
the system of equations

;&:=&- AB+- (1&A)(1&B), (3.25)

1=
- 1&A+- 1&B

- B&- A
}
- p

- q
. (3.26)

Observe that (3.25) and (3.26) (after rationalization of the numerator and
the denominator of (3.26)), are similar to (3.11) and (3.12), except for the
sign of - AB in (3.25) and the sign of - 1&B in (3.26), So, the same
reasoning leads to the formulas

- A=- q:&- p;, - B=- q:+- p;,

which proves the lemma. K
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Proof of Theorem 2. In Theorem 3 we verify that if :< p, then
+:, p�_, which implies that +:, p=*:, p . Therefore, by Lemma 4(a) we
obtain part (a) of the theorem. Lemma 5 proves part (b), and finally part
(c) follows from Theorem 1(a) and 1(b). K

4. THE DENSITY OF *:, p

Proof of Theorem 3. We observe that part (c) follows from part (a)
and Theorem 1(a). Thus, we proceed with the proof of parts (a) and (b)
only.

Case 0<:< p. In this case we find the measure +:, p and observe that
it satisfies the constraint +:, p�_, which shows that *:, p=+:, p .
Theorem 2(a) asserts that S+: , p=[A, B], where A, B are given by (1.9).
Since +:, p is bounded near the endpoints (we could apply [10,
Theorem IV.4.9]), we are led to consider the following boundary value
problem, with solution bounded at both end points:

p.v.
1
? |

B

A

,(t)
t&x

dt=&Q$:, p(x) on [A, B].

According to [5, (42.31)] we have

,(t)=- (t&A)(B&t) p.v.
1
? |

B

A

Q$:, p({)

- ({&A)(B&{

d{
{&t

, (4.1)

where

Q$:, p({)=
1

2: {log
{

1&{
+log

q
p=

provided

|
B

A

Q$:, p({)

- ({&A)(B&{)
d{=0.

The last condition can be easily verified for our choice of A and B from
which it also follows that (1�?) � ,(t) dt=1. We shall now compute a for-
mula for ,(t) and in so doing we shall verify that + :=(1�?) ,(t) dt is
positive on [A, B], so that + is a probability measure.
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To compute the p.v. integral in (4.1) we first observe that since the equi-
librium potential U+[A, B](t)=const. on [A, B], its derivative is zero on
[A, B], i.e.,

p.v.
1
? |

B

A

1
{&t

d{

- ({&A)(B&{)
=0. (4.2)

Therefore,

2:,(t)

- (t&A)(B&t)
=p.v.

1
? |

B

A

log {&log(1&{)
{&t

d{

- ({&A)(B&{)
=: I1+I2 .

(4.3)

In [6] it was shown that

p.v.
1
? |

1

a

log s
s&t

ds

- (s&a)(1&s)

=
2

- (1&t)(t&a) \arc tan �1&t
t&a

&arc tan �(1&t) a
t&a + . (4.4)

Using this formula after the change of variable s={�B in the first integral
of (4.3) we obtain with a=A�B (we also use (4.2))

I1=p.v.
1
? |

B

A

log {
{&t

d{

- ({&A)(B&{)

=
1
B

p.v.
1
? |

1

a

log s
s&t�B

ds

- (s&a)(1&s)

=
2

- (t&A)(B&t) \arc tan �B&t
t&A

&arc tan �A(B&t)
B(t&A)+ . (4.5)

Similarly, after the change s=(1&{)�(1&A) with a=(1&B)�(1&A) we
get

I2=&p.v.
1
? |

B

A

log(1&{)
{&t

d{

- ({&A)(B&{)

=
1

1&A
p.v.

1
? |

1

a

log s
s&(1&t)�(1&A)

ds

- (s&a)(1&s)

=
2

- (t&A)(B&t) \arc tan �t&A
B&t

&arc tan �(1&B)(t&A)
(1&A)(B&t)+ . (4.6)
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Observe that the two integrals are positive (in particular ,(t) is non-
negative on [A, B]). After we add (4.5) and (4.6), and use the formula
arc tan x+arc tan(1�x)=?�2 we see that the resulting measure + is positive
and given by the right-hand side of formula (1.10). Moreover, , is bound
above by 1�:, i.e., +:, p�_, therefore +:, p=*:, p and we obtain part (a) of
Theorem 3.

(b) Case p<:<1& p. The line of proof of this part is somewhat
similar to the one in part (a), so we will give just a sketch. In this case we
know that *:, p=m1 on the interval [0, A]. Set *1 :=(:�(:&A))(*:, p&m1)
(this is the normalized restriction of *:, p on [A, B] so that &*1&=1). Then
*1 is a solution to an unconstrained weighted energy problem on [A, B]
with external field (see (3.17))

Q1, A(x)=
1

2(:&A) \Um1(x)&Um2(x)&Um3(x)+x log
q
p

+1&log q+
=

1
2(:&A) {&x log x+(1&x) log(1&x)

+2(x&A) log(x&A)+x log
q
p

+2A&log q= . (4.7)

In a similar fashion we obtain the formula for the density ,1 of *1 (see
(4.1))

,1(t)=- (t&A)(B&t) p.v.
1
? |

B

A

(Q1, A({))$

- ({&A)(B&{)

d{
{&t

, (4.8)

where we find that

(Q1, A({))$=
1

2(:&A) {2 log({&A)&log {&log(1&{)+log
q
p= .

Again using (4.2) one obtains

2(:&A) ,1(t)

- (t&A)(B&t)
=I3&I1+I2 ,

where I1 and I2 are already computed in (4.5) and (4.6), and I3 can be
found similarly from the formula (4.4) using the change of variable
s=({&A)�(B&A) (now a=0)
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I3 :=p.v.
1
? |

B

A

2 log({&A)
{&t

d{

- ({&A)(B&{)

=
2

B&A
p.v.

1
? |

1

0

log s
s&(t&A)�(B&A)

ds

- s(1&s)

=
4

- (t&A)(B&t)
arc tan �t&A

B&t
. (4.9)

Thus we have evaluated all the integrals in (4.8), which yields a formula
for d*1 �dt. Finally, using this formula and the relation *:, p=(:&A) *1 �
:+m1 we obtain part (b) of Theorem 3. K
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